Home Dynamics 365 Business Central Ingest, Transform, and Load Data in Azure with Ease

Ingest, Transform, and Load Data in Azure with Ease

by FreelancersPBN

As data volumes continue growing, organizations need scalable ways to integrate data from diverse sources. This is where extract, transform, and load (ETL) shine. Azure etl process is a data integration process that:

  • Extracts data from source systems
  • Transforms data for analysis
  • Loads data into a destination data store

Azure makes ETL simpler through Azure Data Factory, a cloud ETL service with an intuitive graphical interface. With over 10 years in data integration, I love Azure Data Factory for its flexibility and ease of use.

Extracting Data from Sources

The first step of ETL is extracting data from sources like databases or software applications. As a consultant, I often work with clients using on-premises and cloud data sources. Azure Data Factory can connect to over 90 data sources through native connectors.

For example, we integrated e-commerce transaction data from an on-premises Oracle database and Shopify’s cloud API into a client’s data warehouse. Azure Data Factory handled connecting and extracting data from these heterogeneous sources with just a few clicks!

Data SourceDetails
On-premises Oracle databaseContained 3 years of order history data
Shopify APICloud e-commerce platform with real-time order data

Transforming Data for Analysis

After extraction, ETL solutions transform data for analysis. With Azure Data Factory, no coding is required to transform data using an intuitive visual interface.

Common transformations include:

  • Filtering to relevant rows and columns
  • Joining disparate sources
  • Aggregating data like sums and counts

For the e-commerce client, we joined Oracle order history with Shopify’s real-time feed and aggregated sales by product category and month for the data warehouse. These transformations prepared the data for business intelligence dashboards.

Loading Data into Azure Data Stores

The final ETL stage loads processed data into a destination store, often a data warehouse or database. Azure Data Factory can load data into diverse Azure destinations like:

  • Azure Synapse Analytics data warehouse
  • Azure SQL Database relational database
  • Azure Data Lake Storage for big data analytics

For the client, we loaded the aggregated sales data into Azure Synapse Analytics for fast SQL queries. Their business users gained self-service access to these curated datasets for analytics.

Orchestrating ETL Processes with Pipelines

Azure Data Factory ties together the extract, transform, and load steps through reusable data pipelines. These pipelines can be scheduled to automate the ETL process.

The Shopify and Oracle pipeline runs hourly to capture the latest e-commerce transactions. This keeps their Azure Synapse Analytics warehouse refreshed with hot data for reporting.

Through Azure Data Factory’s REST API, pipelines can also be triggered on-demand or from external events. Built-in monitoring provides alerts and logging for auditing.

azure etl process

Get Started with Azure ETL Today

I hope this overview gives you a sense of the end-to-end ETL process in Azure. With graphical pipelines, reusable connectors, and mapping tools, Azure Data Factory takes the complexity out of data integration.

To learn more, I recommend trying out Azure Data Factory and building a simple pipeline for your data. Microsoft also provides hands-on labs and tutorials.

If you have an upcoming data analytics project, I’m always happy to chat through the possibilities with Azure Data Factory. Reach out if you need any help orchestrating ETL or analytics processes!

You may also like

George Town Post

Georgetown Post: Your comprehensive platform for news, health, tech, education, politics, entertainment, sports, and more. Stay informed and engaged!

Stay connect with us

Copyright @2024 – All Right Reserved. Designed and Developed by Georgetown Post